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Abstract. In this paper, we examine ensemble algorithms (Boosting
Lite and Ivoting) that provide accuracy approximating a single classifier,
but which require significantly fewer training examples. Such algorithms
allow ensemble methods to operate on very large data sets or use very
slow learning algorithms. Boosting Lite is compared with Ivoting, stan-
dard boosting, and building a single classifier. Comparisons are done on
11 data sets to which other approaches have been applied. We find that
ensembles of support vector machines can attain higher accuracy with
less data than ensembles of decision trees. We find that Ivoting may re-
sult in higher accuracy ensembles on some data sets, however Boosting
Lite is generally able to indicate when boosting will increase overall ac-
curacy.

Keywords: classifier ensembles, boosting, support vector machines,
decision trees.

1 Introduction

A boosted ensemble of classifiers is typically created to get higher accuracy
for a particular type of base classifier on a particular data set. Here, we are
going to instead examine how boosting may be used to deal with data sets
that have a large number of examples and/or learning algorithms that are very
time-consuming. In [1], Pavlov et. al. examined several methods for speeding
up the learning process for support vector machines. One of those methods
used boosting on a small subset of the data and reported good accuracies and
significantly decreased learning times.

In this paper, we present a learning algorithm along the same lines as in [1],
that we call Boosting Lite. The idea is to build the classifiers in the ensemble with

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 161–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



162 L.O. Hall et al.

small subsets of the available training data. The goal is to obtain approximately
the same accuracy that you would get with a boosted ensemble or from a single
classifier. Obviously, building each classifier with a small subset of the data will
be much faster than using all the data. Hence, we look for a time savings and
therefore the ability to better scale to large data sets.

In [2] Ivoting was shown to provide boosting-like results using a subset of the
overall training data. This idea was further explored in a distributed system con-
text in [3] where the accuracy was shown to be comparable to that of boosting.
The Boosting Lite approach is much closer to standard boosting than is Ivoting.
We will compare it to Ivoting results using eleven data sets. Also, for three data
sets we compare Boosting Lite with SVMs as the base classifier.

2 Related Work

This work is motivated in part by the Boost-SMO algorithm introduced in [4]
and again briefly discussed in [1]. Using linear support vector machines (SVM),
between 1% and 90% of the training data was used in the creation of a boosted
ensemble. The authors do not indicate how large any individual ensemble was,
but indicate it was typically from 10 to 15 classifiers. They do indicate that
they stopped when a specified maximum ensemble size was reached or the error
of the current SVM was within ε of 0.5. Their version of a boosting algorithm
was modified from standard boosting described in [5]. It was unclear whether
a subset was initially selected or new subsets were selected from all the data
for each classifier. From a personal communication [6], we found that a new
subset of size x% was selected from all the re-weighted training data for each
new classifier. On four data sets, they were able to show that it was possible to
obtain the same accuracy as using an SVM-SMO model built on all the data
by using as little as 2-5% of the data to train each classifier. The training time
was from 3 to 400 times faster. However, the factor of 400 time result used 1%
Boost-SMO which did not produce an ensemble classifier that was as accurate
as using all the data (it was 0.6% less accurate in that case).

The Boost-SMO algorithm was not adapted for use with any other base clas-
sifier. The utility of an adaptation to decision trees is explored here. Work on
Ivoting [2,3], which is a boosting-like approach that has been applied to decision
trees, suggests that the adaptation may be useful. Ivoting works as follows. An
example is randomly selected from the full data set with all examples having the
same probability of being selected. If it is incorrectly classified by the classifiers
in the existing ensemble that do not have it in its training set, then it goes into
the training set for the next classifier. Otherwise, it goes into the training set
with probability e(k)

1−e(k) , where e(k) is the error estimate at stage k.
The sizes of the training sets in the original work [2] were one of 100, 200,

400 or 800 examples. Experiments used five data sets that ranged from 2000
examples to 43,500 examples. So, relatively small subsets, from roughly 1.8% to
40% of the data, were used for each training set. Boost-SMO used a percentage of
the total training data size. At 5% of the data, which resulted in good accuracy,
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training sets would range from 100 to 2175 examples which is slightly larger than
used in [2].

A distributed version of Ivoting called DIvoting has also been introduced [3].
Accuracies were found to approximate Adaboost accuracies in many cases. That
is, they were even higher than for a single classifier in many cases. Further,
DIvoting also showed significant reductions in the time required to build an
Adaboost-equivalent ensemble. Still, DIvoting was not faster than building a
single decision tree. Decision trees typically require O(fn log n) time to build a
single tree, where n is the number of training samples and f is the number of
features. So the time to build an ensemble of size e, each using only 1/kth of the
data, is O(ef n

k log(n
k )). So it scales up linearly with e, but scales down faster

than linearly with k. As a result, it is possible to build ensemble of decision trees
on 1/kth of the data more quickly than a single tree on all the data, but it is
unlikely unless there is a very large amount of data.

In this paper, we focus on what can be accomplished on a single processor. The
previous work raises the question of whether an adaptation of Adaboost.M1W
[7], which has been shown to be a highly accurate boosting algorithm for more
than two classes, can be effectively applied to small subsets of data for other
types of classifiers. In particular, we will look at decision trees. We will compare
with Ivoting results in terms of accuracy and whether speedups are possible for
decision trees. We will compare with SVMs on 3 data sets, also. The other ques-
tion that we are investigating is whether Ivoting might be effective in providing
fast training for support vector machines.

We compare Boosting Lite experimentally on 11 datasets to (a) regular Ad-
aboost and to (b) a single classifier trained on all the training data, using deci-
sion trees. We compare Boosting Lite using decision trees to Boost-SMO using
SVMs [1,4] on three data sets by using new experimental numbers for Boosting
Lite generated for this paper and published numbers for Boost-SMO on three
datasets. We compare Boosting Lite using decision trees to Ivoting [2,3] using
decision trees on 7 datasets using new experimental numbers for Boosting Lite
generated for this paper and published numbers or approximate numbers from
a graph for Ivoting [3].

3 Boosting Lite

The algorithm we are naming Boosting Lite is based on Adaboost.M1W [7].
The differences in implementation are as follows. While all the training data
is weighted, only a specified x% of it is chosen for the kth training set. The
examples are chosen probabilistically based on their weights, with replacement.
So, it is possible for an example to appear in the training set more than one
time. The algorithm is shown in Figure 1.

We grow the ensemble until a specified number of classifiers have been added
or until the next classifier does not meet the standard boosting criterion for
being added to the ensemble. Each of the classifiers in the ensemble is built on
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Let I(“statement”) = 1 iff “statement” is true, and 0 otherwise.
Let xi be the ith example and ci denote the class of that example.

Input: Let L = {(x1, c1), . . . , (xn, cn) : xi ∈ X and ci ∈ C} with 2 ≤ |C| ≤ n and
|X| = n.
Let h be a classifier that takes in an xi and generates a class in C.
Let T be the number of boosting rounds

Initialize: Di(i) = 1
n
.

For t = 1, . . . , T :

– Train a classifier ht with a subset of size S << n randomly sampled according to
the weighted distribution, Dt, where ht should minimize the weighted error rate:
εt =
�

i Dt(i)I(ht(xi) �= ci).

– Set αt = ln( (|C|−1)(1−εt)
εt

).
– Update D: Dt+1(i) = Dt(i)e−αtI(ht(xi)=ci)/Zt

where Zt is a normalization factor (chosen so that Dt+1 is a distribution)

Output: Set the final classifier H(x): H(x) = arg maxc∈C f(x, c) =
arg maxc∈C(

�T
t=1 αtI(ht(x) = c))

Fig. 1. Boosting Lite algorithm (a modified version of AdaBoost.M1W)

a rather small subset of the original data set. This enables each classifier to be
built more quickly and creates the potential to scale to very large data sets.

The algorithm was applied with the OpenDT [8] decision tree learning algo-
rithm, which is essentially a public domain re-implementation of C4.5 release
8 [9] without pruning, with the RainForest algorithm for evaluating attributes
[10] and using the median method for handling missing values. The single tree
results come from C4.5 with default pruning (CF=0.25).

4 Data sets

For comparison purposes we have used all but one of the data sets on which
Ivote and SMO-Boost were evaluated in [1,4]. The Reuters data set was not
used because we could not re-create the train/test data partitions. The data sets
were used with the training and testing sub-divisions from [1,2,3] for compari-
son. We also include two other data sets which have a good number of examples,
pendigits and krk. Table 1 shows the names of the data sets and their charac-
teristics. They come primarily from the UCI repository [11] and statlog project
[12].

The training set sizes range from a modest 4335 examples to 209,529 examples
in 315 dimensions. For the krk data set that was not previously partitioned into a
training and test set, we did a tenfold cross validation to get an average accuracy
and time.
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Table 1. Description of data sets attributes and size

Data Set # attributes # Train ex. # Test ex. # classes
adult 14 30162 1560 2
digit 256 7291 2007 10
dna 60 2000 1186 3
forest cover 54 98884 396257 2
Jones 315 209529 17731 3
krk 6 28056 0 18
letter 16 15000 5000 26
pendigits 16 7494 3498 10
shuttle 9 43500 14500 7
satimage 36 4335 2000 6
web 294 31932 4886 2

5 Experimental Results

There were three data sets, adult, forest cover and web, used in both the
SVM experiments and our experiments. The support vector machine was used
with sequential minimal optimization training (SMO) and 1% of the data. The
first column of Table 2 show the accuracy from a single tree, and the next three
show the accuracy of ensembles of 100 boosted trees using 1%, 5%, and 100% of
the data. We calculate the difference in accuracy between a single support vector
machine classifier and the boosted SVM ensemble, as well as the single decision
tree accuracy and the 1% Boosting Lite ensemble. The gap between the two
differences is given in the fifth column (BL - SVM). A positive number means
the SVM ensemble is closer to the accuracy of a single SVM than the decision
tree ensemble is to a single tree. For both types of classifier, the ensembles
are less accurate than the single classifier. For each dataset, the difference in
accuracy between an ensemble of decision trees and a single tree is more than
for the ensemble of support vector machines and a single support vector machine.
This suggests that support vector machines may be used to create an accurate
ensemble classifier from less examples than are needed for a decision tree. This
result is particularly striking for the forest cover data set where there is over an
11% difference between a single tree and an ensemble of boosted decision trees
built with 1% of the data. For support vector machines, the difference between
the ensemble and a single support vector machine was only 1%.

However, there are two caveats that arise when examining results from these
three data sets. As can be seen in Table 2, boosting does not increase the accuracy
for two of the three data sets when using all the data, at least for decision tree
classifiers. This suggests that more data sets and more experiments are necessary.
The data sets need to be evaluated to determine if they do in fact benefit from
boosting.

It has been shown, for a relatively small number of data sets, that Ivoting can
result in accuracies that are very close to the accuracy of a boosted ensemble for
CART trees [2] and C4.5 trees [3]. Seven of those data sets are included in this
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Table 2. Boosting Lite (BL) on decision trees compared with SVM’s. The last column
compares the gap in ensemble accuracy and single classifier accuracy with a positive
number meaning the gap was lower for the SVM’s.

Data Set Single tree BL-1% BL-5% Boosting BL - SVM
adult 85.97 83.71 84.26 84.56 1.36
forest cover 76.91 65.58 75.06 81.58 10.16
web 76.16 75.1126 75.5014 74.5395 0.41

study. The best accuracy with Ivoting (as reported in the literature) came with
a bite-size (training set size) of 800 examples, [2]. In Table 3, we show the results
for a single tree and ensembles of size 100 created with 1, 5, and 100% of the
data, as well as the accuracy for an Ivoted ensemble and the most comparable
accuracy from Boosting Lite. The Ivote results are all from the CART decision
tree classifier using bites of 800 examples with three exceptions. The forest
cover, pendigits, and Jones results come from a C4.5 classifier and the Jones
bite size is 818 [3]. We do not show the Ivote results for krk because one cannot
obtain good accuracy when subsets are used, as discussed below.

Table 3. Boosting Lite (BL) on decision trees compared with Ivoting

Data Set Single tree BL-1% BL-5% Boosting BL Comp Ivote (800)
digit 86.85 89.44 92.68 94.37 94.22 94.5
dna 92.66 88.11 94.8567 94.941 95.62 96.2
forest cover 76.91 65.58 75.06 81.58 65.57 73.9
Jones 52.78 61.29 62.04 66.97 61.29 64.2
krk 80.73 45.90 69.66 89.17 - -
letter 81.02 79.96 93.96 97.12 95.88 96.2
pendigits 92.11 94.68 97.03 97.43 96.91 96.97
shuttle 99.95 99.99 99.99 99.99 99.99 99.99
satimage 85.35 82.25 88.05 90.85 90.35 91.3

For Boosting Lite, the results come from a percentage of the training data
which is comparable to that of bites with 800 examples and up to 500 trees in the
ensemble. In each case, we set the number of trees for Boosting Lite to be equal
to the number of iterations Ivoting required to converge to a stable accuracy
[2,3]. With the exception of the two data sets with the same type of decision
tree classifier, it is not possible to directly compare accuracies. However, we can
look at how well the ensemble built with less data per tree did in approximating
the accuracy of an ensemble built with all of the data available for each tree. For
the shuttle data set all types of boosted classifiers are highly accurate. Boosting
Lite is within 0.5% in accuracy for the satellite and digit data sets and exceeds
the accuracy of the full ensemble for the dna data set.

For the forest cover, Jones, and letter data sets, a Boosting Lite ensemble
results in a classifier that is at least 1% less accurate and as much as 16%
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less accurate than Adaboost.M1W on all the data. Ivote (100 trees) is also less
accurate than a fully boosted classifier on each of these data sets. However, it is
almost equivalent to the results from the boosted CART ensemble for the letter
data set. It is only 3% less accurate for forest cover and 2.7% less accurate for
the Jones data set. Ivoting is using just over 0.5% of the data for the forest
cover results and about 0.4% of the data for the Jones results. For both forest
cover and Jones, Ivoting results in a higher accuracy ensemble classifier than
Boosting Lite even though it uses less than half as much data.

The results with the pendigits data set do show a 3% accuracy difference
between boosting at 1% and boosting with the full data set. Using 5% of the data
results in an ensemble within about 0.4% of the boosted ensemble with all the
data. krk involves a chess endgame and suffers significant accuracy degradations
in a tenfold cross validation with less than 10% of the training data available and
up to 500 trees. With 10% of the data available for each tree in the ensemble, it
reaches 80.9% accuracy with 200 trees. The nature of this domain likely causes
the requirement for more data.

Fig. 2. Boosting Lite and Boosting accuracies on the forest cover data

To get an idea of the differences in classifier accuracy for different percentages
of the training data and as more trees are added to a Boosting Lite ensemble,
we show results for the forest cover data set in Figure 2. This data set shows
greater differences for different sized training sets than most. The shape of the
curves for 5% and greater is typical. It is also the largest data set with most of
the data reserved for testing. You can see that with 1% of the data the ensemble
never reaches the accuracy of boosting with all the data. With 5% the accuracy
gets close and for 15% and 20% the accuracies are very close.
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6 Discussion

A question that we were originally interested in was whether there was any
possibility of speeding up decision tree construction for large data sets using
Boosting Lite. OpenDT uses the RainForest algorithm [10] to avoid sorting data
at internal nodes, making it quite a bit faster than older decision tree building
algorithms such as C4.5. To look at timing, we took the time required to build
a single tree in OpenDT and the time required to prune a C4.5 tree built on the
same data and added the two times. This became the time to build a single tree.
This can be compared with the time required to build 100 trees using 1% of the
data. For more trees and/or more data, there is no time reduction from using
the Boosting Lite approach. In fact even with 1% of the data, only for the web,
Jones and digit data sets were there any speedups. In these cases, the speedups
are 6.7, 1.3 and 1.4 times respectively. However, in general there is a slowdown
for the data sets used here under the conditions described. Interestingly, the
accuracies were higher than those obtained with a single tree for the Jones and
digit data sets for which speedups were observed. The accuracy on the third
(web) was higher than boosting with all the data, but 1% lower than a single
decision tree.

Boosting Lite on 5% of the data provides accuracies which are greater than
those obtained from one tree for all data sets where boosting results in a more
accurate ensemble with two exceptions (krk and forest cover). The krk data
set would probably not induce a data miner to try using subsets because the
search space for chess is known to be large. So, Boosting Lite at 5% could be
used to predict whether boosting will help on a data set.

The results indicate that while Boosting Lite is closer to classical boosting
in operation than Ivoting, Ivoting seems often more accurate. Ivoting selects
examples for the next training set randomly, but primarily admits them to the
training set based on error from classifiers that do not have them in their training
data set (this error rate is often called out of bag error). Ivoting’s higher accuracy
in some cases seems to indicate that using out of bag accuracy allows for better
selection of training examples for the boosted classifiers. Given that Boosting
Lite provides significant time savings for support vector machines, this raises
the question of whether Ivoting might generally provide more accurate ensembles
and maintain the time savings for slower classifiers like support vector machines
and potentially neural networks.

7 Summary

In this paper we examined a variant of boosting that was originally introduced
for speeding up support vector machine learning and adapted it to decision
trees. We found that it appears that, when boosted, support vector machines
can learn accurate models from smaller subsamples than decision trees. Boosting
with subsampled data using decision trees as the base classifier was faster for 3
of 11 data sets than building a single tree on all the data. In order to have any
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chance of speeding up the learning on these data sets, the number of trees needed
to be limited to 100 and the training set for each tree needed to be limited to
1% of the total training data set size. This is a function of the speed of decision
trees and indicates that benefits require larger training sets than used here. Still,
Boosting Lite on 5% of the data could be used to predict whether boosting with
all the data will help on a data set.

For two of the three data sets used in the support vector machine work [4,1],
we found that boosting with decision trees and all of the training data did not
result in an increase in accuracy compared to a single decision tree. This result
is somewhat anomalous, and suggests that further investigation on a broader
range of datasets is needed. Also, we compared with an alternative boosting
approach using subsamples, Ivoting. Ivoting was often able to result in a more
accurate ensemble. This is likely due to using an error estimate from only trees
which were not built with a potential training example in the selection process
of examples for succeeding training data sets. Applying Ivoting to SVMs with
large data sets has the potential to build accurate classifiers quickly, and it is an
area for future research.
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